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Abstract

1 Background

This project simulates how reaction wheels control the
attitude of satellites and other spacecrafts. Using elec-
tric motors, reaction wheels apply a torque to a space-
craft through changing the wheel rotation speed. One
of Kepler’s reaction wheel is shown in Figure.1. Reac-
tion wheels are ideal for precise attitude adjustments.
They come in different sizes and have different maximum
torques. They usually have a saturation speed at around
5000 rpm, and momentum dumping through thrusters or
other means are needed to reduce the wheel speeds.

Figure 1: A reaction wheel for the Kepler Telescope.[4]

2 Learning Objectives

I want to learn about how spacecrafts control its atti-
tude while in orbit. In particular, I want to simulate
how much torque each reaction wheel should apply to the
spacecraft to achieve a certain attitude given 3 orthog-
onal wheels. I originally wanted to apply Euler angles,
angular momentum conservation and rotation matrices.

3 System Model

The model, shown in Figure.2, consists of a spacecraft
with three reaction wheels orthogonally aligned with the
body frame of the space craft (b1, b2, b3). The inertial
frame is (i, j, k). The position of the center of mass
of the space craft is not considered. The orientation of
the spacecraft is expressed in quaternions, where e is the
Euler axis and θ is the rotation angle around the axis.

Figure 2: Diagram showing the body frame of the space
craft (b1, b2, b3) and inertial frame(i, j, k). A spacecraft is
represented as a cylinder and has 3 orthogonal reaction
wheels aligned to the body axis. e and θ are the Euler
axis and angle of the quaternion rotation.

3.1 Equations of motion

The equations of motion for the spacecraft is as follow [2]:

Jscẇ = (Jscw + Jαv) × w + u+ τdist,

v̇ = −J−1
α u,

(1)

where Jsc is the mass moment of inertia of the space-
craft, w = (w1;w2;w3) is the absolute angular velocity
of spacecraft body frame (expressed in the body frame),
Jα is a diagonal matrix representing the mass moment
of inertia for each wheel, u is the control torque from the
wheels and τdist is the external disturbance torque.
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4 RESULTS

3.2 Spacecraft and wheel parameters

The spacecraft is assumed to be cylindrical with a uni-
form density of 10kg/m3, the average density of Kepler
telescope [6]. This way, the mass moment of inertia
of a spacecraft can be calculated through a single vari-
able: the mass of the spacecraft. The actual mass mo-
ment of inertia for a spacecraft is obviously different, and
can only be determined through direct measurement or
CAD.

The reaction wheel parameter is based on Sun-
space’s reaction wheel SUN-STAR, which has a moment
of inertia of 1.5 × 10−3kgm3, a maximum torque of 0.05
Nm and a saturation speed of 4200 rpm (about 420
rad/s) in both directions. This is a relatively small reac-
tion wheel. For comparison, Hubble’s reaction wheels
weigh 40kg [4], 20 times the mass of the Sunspace’s
wheels.

3.3 Control logic

To achieve a rest to rest maneuver from the origin quater-
nion [0, 0, 0, 1] to a final quaternion qf , the following
linear controller from [1] is used:

u = −sgn(q4)Kqe −Cw,

K = kJsc,

C = cJsc,

(2)

where u is a vector of the control torque in each axis
direction, k and c are controller gain coefficients, and qe
is the attitude error quaternion, which can be determined
from the current attitude quaternion and qf . The exact
matrix come from page 403 of [1]. u is constrained by
the maximum torque of 0.05 in either direction through
a min and max function. The saturation speed of the
reaction wheels is not taken into account in the control
logic, but will be considered when analyzing the results.

3.4 Validation of model

To validate that the model simulate reality reasonably,
the rotation angle, angular velocities, control torques,
and reaction wheel speeds are plotted vs time in Figure.3
for a small rotation angle of 5 deg along a 1-1-1 rotation
axis. The components of the angular velocity, control
torque and wheel speed are fairly identical because of the
symmetric axis. The eigen angle theta exhibits a damped
linear system response. The other three variables behave
as expected.

Figure.4 shows a larger rotation angle of 60 deg
along 1-2-3 rotation axis. The components of the angu-
lar velocity, the control torque and the wheel speeds are
not the same now because of the different components
of the rotation axis. The wheel speeds v also exceeds
the saturation limit of 420 rad/s. This means that for

a spacecraft of similar or greater mass than 50kg, a rel-
atively large angle can easily cause saturation, suggest-
ing to limit the use of the particular Sunspace reaction
wheels to small angles and smaller spacecraft.

Figure 3: Plot of the eigen angle theta, the 3 components
of the angular velocity(w), the control torque from the 3
wheels(u) and the speed of the three wheels(v).

Figure 4: Same as Figure. 3

4 Results

One important output variable to look at is the time it
takes to accomplish a rest-to-rest maneuver, represented
as the settling time of the rotation angle. The effect of
the spacecraft’s mass on the best controller gain coeffi-
cients and settling time is investigated.

For a given maneuver, the best controller gain co-
efficients k and c are determined by looping through k
values from 0.5 to 5 and c values of 0.5 to 8 in increments
of 0.5. This is done for spacecraft masses of 1 to 101kg
in increments of 10kg, as shown in Figure.5. The k and c
corresponding to the minimum settling time is found for
each mass from the matrix and fminsearch is used with
that k and c as initial values. The results for a 5 deg, 30
deg, and 60 deg rotation are shown in Figure.6, Figure.7
and Figure.8.
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7 CONCLUSION

Figure 5: A collection of p-color graph of the settling
time for different controller gain coefficients. The eigan
axis of rotation is 1-0-0. The actual k and c value is half
of the axis value. For masses greater than 30kg, only half
of the matrix is calculated (the lower right half) because
the minimum time is almost guaranteed to occur in that
half.

Figure 6: K and C are the best controller gain coefficients
gathered from the matrix, while K1 and C1 are the best
from fminsearch. Similarly, T corresponds to the settling
time for K and C, and T1 corresponds to the settling time
for K1 and C1.

Figure 7: Same as Figure. 6

The settling time increases linearly as the mass of
the space craft increases, and not surprisingly, it takes a
longer time for a larger angle turn. The best control gain
coefficients exhibit interesting patterns. The best k tend
to decrease as mass increases, while c increases slightly in
the beginning and varies afterwards. The jagged pattern

Figure 8: Same as Figure. 6

for c in Figure.7 and 8 might be due to the discrete nature
of the matrix search. The best values for k are quite
similar for the 3 different angles, while and best values for
c varies more. k and c have a great effect on the settling
time, as the largest settling time with some coefficients
can easily be 5 times greater than the lowest settling
time with the best coefficients.

5 Animation and Visualization

An animation of the rotation of the body frame is im-
plemented in matlab.

6 Improvement

There are a lot more that can be done with the model.
First, the spacecraft’s mass moment of inertia can be
more accurate. However, it is more difficult to measure
the mass moment of inertia for a spacecraft in order to
use it in the simulation. Secondly, as mentioned in the
validation section, the reaction wheels saturate for cer-
tain maneuvers. The rotation angle and axis that cause
reaction wheels to saturate for different spacecrafts can
be investigated quantitatively. This saturation can also
be included in the control logic. Thirdly, there might
be a better way to find the best controller gain coef-
ficients that is more efficient or accurate than the one
I used. Lastly, external torques on the spacecraft such
as gravity gradient can be taken into account, as well
as power consumption of the wheels as a constraint, as
demonstrated in [3].

7 Conclusion

Reaction wheels can theoretically achieve any re-
orientation maneuver for small and large spacecraft if
momentum damping is implemented so that the wheel
speeds do not saturate. However, the time it takes for
rest-to-rest maneuvers increases as the mass of the space-
craft and as the turn angle increase. There are of course
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power constraints on the feasibility of reaction wheels in
actual spacecrafts, because reaction wheels are generally
less power efficient than other control mechanisms such
as control moment gyros [3].

The best gain coefficients of a linear state feedback
controller that lead to the fastest maneuver can be found
roughly through a Matlab simulation. The matlab model
is powerful as it can accommodate any set of spacecraft
and reaction wheels parameters, and ode45 is good for
simulation of closed-loop control systems with a linear
state feedback controller.

8 Diagnosis and Reflection

The project went pretty smoothly. The biggest chal-
lenge I faced was to define the question to investigate.
The model of dynamics and control was fairly straight
forward to create in Matlab, but deciding what to do
with it is hard because I have to look at what other peo-
ple care and write about and learn more about the topic.
Once I decided on that, I had to write a lot more scripts
to accomplish the goal.

While I originally used Euler angles, I realized
halfway that quaternions are used more in spacecraft
orientation, so I had to abandon my Euler angle script
and switch to quaternions. Quaternions are convenient
though, and I’m glad to have learnt them. I also learnt
about linear state feedback controller and how reaction
wheels work. I was able to find many good papers and
textbooks and understand most of them.

9 Future Usage

This project is suitable for a future Dynamics class
project because it is reasonably scoped (no more than
25 hours of work) and there are many resources avail-
able on line. A simple set of instructions for my project
would be:

1. Learn about quaternions.

2. Derive equations of motion for a spacecraft with
reaction wheels (either by yourself or get it from a paper.
[2] is a good one for that).

3. Implement a model using the equations of motion
in matlab.

4. Learn about state feedback control logic and im-
plement it in the matlab model.

5. Test your model, debug, decide what you want
to investigate with it.

6. Generate results and write the paper.
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A MATLAB CODE

A Matlab code

This is the script that defines parameters, call ode45,
plot and does animation:

1 func t i on r e s=FP 2 (m, k1 , c1 , time , graph )
2 %c l o s e a l l
3 %Space c r a f t dimensions
4 %I s c=FP Icube ( 1 0 , . 2 , . 2 , . 2 ) ; %m ( kg ) , a , b ,

c c a l c u l a t e MOI f o r a cubic
s p a c e c r a f t

5 r=nthroot (m/40/ pi , 3 ) ;
6 I s c=FP Icy l inder (m,2* r , r ) ; %m( kg ) , h , r

c a l c u l a t e MOI f o r a c y l i n d r i c a l
s p a c e c r a f t

7 Ia =[1.5 e −3 ,0 ,0 ;0 ,1 .5 e −3 ,0 ;0 ,0 ,1 .5 e −3] ;
8
9 %Control Gain matr i ce s

10 wn=1; % natura l f requency in Hz
11 zeta =0.05; % value between 0 and 0 .05
12 %k1=2*wnˆ2 ;
13 %c1=2*ze ta *wn;
14 K=k1* I s c ;
15 C=c1* I s c ;
16
17 %I n i t i a l va lue s
18 Tq = [ 0 ; 0 ; 0 ] ; %External torque exper i enced

by s p a c e c r a f t
19 v 0 = [ 0 ; 0 ; 0 ] ;
20 q 0 = [ 0 , 0 , 0 , 1 ] ;
21 turnang le =30; % d e s i r e d turn ang le in

degree s
22 e = [ 1 , 2 , 3 ] ;
23 en=norm( e ) ;
24 qc=[ s ind ( turnang le /2)*e (1 ) /en ; s ind (

turnang le /2)*e (2 ) /en ; s ind ( turnang le
/2)*e (3 ) /en ; cosd ( turnang le /2) ] ; %
d e s i r e d f i n a l a t t i t u d e in quarten ions

25
26 w 0 = [ 0 , 0 , 0 ] ;
27 i n i t i a l =[q 0 , w 0 , v 0 ' ] ; %q1 , q2 , q3 , q4 ,

wb1 , wb2 , wb3 ( o f s p a c e c r a f t ) , v (
r o t a t i o n speed o f wheels )

28 %time =200; %run time in seconds
29
30
31 [T, Z]=ode45 (@(t , y ) FP 2 rates ( t , y , I sc , Ia ,

K,C, qc ) , [ 0 : time ] , i n i t i a l ) ;
32 Z ( : , 1 : 1 0 ) ;
33 Q4=Z ( : , 4 ) ;
34 THETA=2*acosd (Q4) ;
35
36 i f graph==1
37 f i g u r e
38 subplot ( 4 , 1 , 1 )

39 hold on
40 p l o t (T,THETA, 'g' , 'LineWidth' , 1 . 5 )
41 x l a b e l ( ' time ( s ) ' , 'FontSize ' , 14) ;
42 y l a b e l ( 'Rotation ang le theta around

e i g e n a x i s ( degree s ) ' , 'FontSize '
, 14) ;

43 t i t l e ( [ num2str ( turnang le ) , ' deg
r o t a t i o n around ' , num2str ( e (1 ) ) ,
num2str ( e (2 ) ) , num2str ( e (3 ) ) , '
a x i s f o r a ' , num2str (m) , 'kg
space c ra f t , k=' , num2str ( k1 ) , ' , c=
' , num2str ( c1 ) ] , 'FontSize ' , 16) ;

44 Q=Z ( : , 1 : 4 ) ;
45 W=Z ( : , 5 : 7 ) ;
46
47 f o r i =1: l ength (T)
48 qe=[qc (4 ) , qc (3 ) ,−qc (2 ) ,−qc (1 ) ; ...
49 −qc (3 ) , qc (4 ) , qc (1 ) ,−qc

(2 ) ; ...
50 qc (2 ) ,−qc (1 ) , qc (4 ) ,−qc

(3 ) ]*Q( i , : ) ' ;
51
52 U( i , 1 : 3 )=min ( 0 . 0 5 , max( −0.05 , (−

s i gn (Q( i , 4 ) )*K*qe−C*W( i , : ) ') ') ) ;
53 end
54
55 subplot ( 4 , 1 , 2 )
56 p l o t (Z ( : , 5 ) , 'LineWidth' , 1 . 5 ) ;
57 hold on
58 p l o t (Z ( : , 6 ) , 'g' , 'LineWidth' , 1 . 5 ) ;
59 p l o t (Z ( : , 7 ) , ' r ' , 'LineWidth' , 1 . 5 ) ;
60 x l a b e l ( ' time ( s ) ' , 'FontSize ' , 14) ;
61 y l a b e l ( 'w( rad/ s ) ' , 'FontSize ' , 14) ;
62 legend ( 'w1' , 'w2' , 'w3' ) ;
63 a x i s ( [ 0 time −.1 . 1 ] ) ;
64
65 subplot ( 4 , 1 , 3 )
66 p l o t (U( : , 1 ) , 'LineWidth' , 1 . 5 ) ;
67 hold on
68 p l o t (U( : , 2 ) , 'g' , 'LineWidth' , 1 . 5 ) ;
69 p l o t (U( : , 3 ) , ' r ' , 'LineWidth' , 1 . 5 ) ;
70 x l a b e l ( ' time ( s ) ' , 'FontSize ' , 14) ;
71 y l a b e l ( 'u(N) ' , 'FontSize ' , 14) ;
72 legend ( 'u1' , 'u2' , 'u3' ) ;
73 a x i s ( [ 0 time −.05 . 0 5 ] ) ;
74
75 subplot ( 4 , 1 , 4 )
76 p l o t (Z ( : , 8 ) , 'LineWidth' , 1 . 5 ) ;
77 hold on
78 p l o t (Z ( : , 9 ) , 'g' , 'LineWidth' , 1 . 5 ) ;
79 p l o t (Z ( : , 1 0 ) , ' r ' , 'LineWidth' , 1 . 5 ) ;
80 x l a b e l ( ' time ( s ) ' , 'FontSize ' , 14) ;
81 y l a b e l ( 'v ( rad/ s ) ' , 'FontSize ' , 14) ;
82 legend ( 'v1' , 'v2' , 'v3' ) ;
83 a x i s ( [ 0 time −800 8 0 0 ] ) ;
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84
85 %r o t a t i o n matrix to t r a n s l a t e

quatern ion to o r i e n t a t i o n
86
87 f o r i =1: l ength (T)
88 q i=Z( i , 1 ) ;
89 q j=Z( i , 2 ) ;
90 qk=Z( i , 3 ) ;
91 qr=Z( i , 4 ) ;
92 R=[1−2*qj ˆ2−2*qk ˆ2 , 2*( q i *qj−qk*

qr ) , 2*( q i *qk+qj *qr ) ; ...
93 2*( q i * qj+qk*qr ) , 1−2*q i ˆ2−2*

qk ˆ2 , 2*( q j *qk−q i *qr ) ; ...
94 2*( q i *qk−qj *qr ) , 2*( q j *qk+q i *

qr ) , 1−2*q i ˆ2−2*qj ˆ 2 ] ;
95 xax i s ( i , 1 : 3 )= (R* [ 1 ; 0 ; 0 ] ) ' ;
96 yax i s ( i , 1 : 3 )= (R* [ 0 ; 1 ; 0 ] ) ' ;
97 z a x i s ( i , 1 : 3 )= (R* [ 0 ; 0 ; 1 ] ) ' ;
98 % xax i s ( i , 1 : 3 ) * yax i s ( i , 1 : 3 ) '
99 % z a x i s ( i , 1 : 3 ) * yax i s ( i , 1 : 3 ) '

100 % xax i s ( i , 1 : 3 ) * z a x i s ( i , 1 : 3 ) '
101 end
102
103 %animation
104 f i g u r e
105 f o r i =1: l ength (T)
106 qu iver3 (0 , 0 , 0 , xax i s ( i , 1 ) , xax i s ( i

, 2 ) , xax i s ( i , 3 ) , 'g' , 'LineWidth
' , 2 ) ;

107 hold on
108 qu iver3 (0 , 0 , 0 , yax i s ( i , 1 ) , yax i s ( i

, 2 ) , yax i s ( i , 3 ) , 'c' , 'LineWidth
' , 2 ) ;

109 qu iver3 (0 , 0 , 0 , z a x i s ( i , 1 ) , z a x i s ( i
, 2 ) , z a x i s ( i , 3 ) , ' r ' , 'LineWidth
' , 2 ) ;

110 qu iver3 (0 , 0 , 0 , 1 , 0 , 0 , 'k' , '
LineWidth' , 1 ) ;

111 qu iver3 (0 , 0 , 0 , 0 , 1 , 0 , 'k' , '
LineWidth' , 1 ) ;

112 qu iver3 (0 , 0 , 0 , 0 , 0 , 1 , 'k' , '
LineWidth' , 1 ) ;

113 qu iver3 (0 , 0 , 0 , e (1 ) , e (2 ) , e (3 ) , 'k'
, 'LineWidth' , 2 )

114 x l a b e l ( 'x' ) ; y l a b e l ( 'y' ) ; z l a b e l
( 'z' ) ;

115 drawnow
116 hold o f f
117 end
118
119 end
120
121
122 S=s t e p i n f o (THETA,T) ;
123 r e s=S . Sett l ingTime ;

124 end

This is the ode45 rate function that contains the
equation of motions and control logic:

1 func t i on r e s=FP 2 rates ( t , z , I sc , Ia ,K,C,
qc )

2 q=z ( 1 : 4 ) ;
3 w=z ( 5 : 7 ) ;
4 v=z ( 8 : 1 0 ) ;
5
6 qe=[qc (4 ) , qc (3 ) ,−qc (2 ) ,−qc (1 ) ; ...
7 −qc (3 ) , qc (4 ) , qc (1 ) ,−qc (2 ) ; ...
8 qc (2 ) ,−qc (1 ) , qc (4 ) ,−qc (3 ) ]* q

;
9

10 u=−s i gn ( q (4 ) )*K*qe−C*w; %
c o n t r o l input based on qe and
omega

11 u= min ( 0 . 0 5 , max( −0.05 , u) ) ; %
s a t u r a t i o n l i m i t based on max

torque o f 50mNm, 0 .05 Nm
12
13 dvdt=inv ( Ia )*(−u) ;
14
15 dqdt =1/2*[0 w(3) −w(2) w(1) ; ...
16 −w(3) 0 w(1) w(2) ; ...
17 w(2) −w(1) 0 w(3) ; ...
18 −w(1) −w(2) −w(3) 0 ]* q

;
19
20 dwdt=inv ( I s c ) *( c r o s s ( ( I s c *w+Ia *v

) ,w)+u) ;
21
22 r e s =[dqdt ; dwdt ; dvdt ] ;
23 end

This is script that calculates the mass moment of
inertia of a cylindert:

1 func t i on r e s=FP Icy l inder (m, h , r )
2 r e s =[m*(3* rˆ2+hˆ2) /12 , 0 , 0 ; ...
3 0 ,m*(3* rˆ2+hˆ2) /12 ,0 ; ...
4 0 ,0 , m* r ˆ 2 / 2 ] ;
5 end
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