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1 Introduction

In this project we tried to control a pendulum attached to a lego motor to move towards the upright position
without using any sensors such as an encoder. We did this by measuring the voltage across the motor,
feeding that through a controller and commanding the motor current with the controller’s output.

We started with an integrator controller which we used in previous labs to make a position controller. We
adjusted values in our integrator and amplifier so that we could sense the position of the pendulum through
multiple rotations. Then we explored the behavior which we saw in a class demo where a position controller
with a setpoint of zero and gains which put the system near instability exhibits an inverted pendulum
behavior. We then looked at the system and tried to explain what might cause this inverted pendulum
behavior.

2 Circuit and System

Figure 1: We are using the same motor driver as in previous circuits. The input voltage is Rmim, proportional
to the current across the motor. a is the ratio of resistance on the 10kΩ variable resistor.
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Figure 2: The control circuit includes an integrator and a potentiometer-adjusted proportional controller.

3 Transfer Functions

3.1 Motor

Figure 3: A model of the motor as a parallel RLC circuit. Rx, Lx, Cx are mechanical components. The
torque τ = Kmi where i is the current through the motor. The electromotive force vemf = Kmω where ω is
the angular velocity of the motor.

In previous labs we characterized this motor without a pendulum (Lx = 0) and found the following values. I
is the moment of inertia of the motor and b is the mechanical damping factor. Rs is the electrical resistance
of the motor, i is the current across the motor, and Km is the motor constant.

Rs = 33.3Ω

Km = 0.66V s

I = 0.0156
N

m/s

b = 0.01Nm
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Figure 4: We attribute the nonlinear decrease in amplitude at low speeds to be caused by friction.

From this model we can find

α =
1

2RxCx
= 0.56

ω0 =

√
1

LxCx
= 8.49rad/sec

which allow us to calculate

Rx =
Km

2

b
= 43.56Ω

Lx =
2Km

2

lmg
= 0.3384H

Cx =
I

Km
2 = 0.041F

Note that Lx is introduced by the pendulum and l is the length of the pendulum, m its mass, and
g = 9.8ms−2. The transfer function of the motor is now

Vemf
im

=
s
Cx

s2 + 1
RxCx

s+ 1
LxCx

Q =
ω0

2α
= 7.56
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3.2 Integrator

Figure 5: The integrator block

The transfer function for this integrator is

Va
Vin

=
1

RcCs

3.3 Proportional

Figure 6: The integrator block

The inputs and outputs of this proportional controller are related by

Vout − Vsp
Rf

=
Vsp − Va

Ri

One way to solve for a transfer function is to set Vsp to 0, yielding a simple proportional gain:

Vout
Va

=
−Rf
Ri

Another is to model Vout as a gain Kp multiplied by the difference between Vin and V ′sp, a value derived
from Vsp. This model has two inputs and therefore does not have a out/in transfer function ratio.

Vout = −Kp(Va − V ′sp)

V ′sp =
Ri +Rf
Rf

Vsp
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3.4 Overall

Figure 7: The overall system diagram

To characterize the entire system we must simplify the system diagram. For convenience, we will define R+f
Ri

as K1 and RcC as τi making the controller transfer function
−βKp

τis
when Vsp = 0.

Figure 8: The simplified system diagram

A transfer function for this entire system is

Vemf
V ′sp

=
Kp

s
τm

s2 + 2αs+ ω2
0 +

βKp

τiτm

We can further get a transfer function in terms of θ and V ′sp by multiplying both sides by 1
s .

θ = ω
1

s
=
Vemf
Km

1

s

θ

V ′sp
=

Kp

Kmτm

s2 + 2αs+ ω2
0 +

βKp

τiτm
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4 Incorporating Torque Feedback

In order to induce the inverted pendulum behavior from our circuit, we had to adjust the potentiometer in
the original motor circuit which was previously set to cancel the torque portion of the voltage across the
motor. We therefore changed the output of the motor circuit to include a term proportional to current.

− βVemf is replaced with ((1 − β)Rm − βRs)Im − βVemf

K1 = (1 − β)Rm − βRs

Using the controller’s transfer function, we can find:

Vout =
−Rf

RiRcCs
(K1Im − βVemf )

based on our circuit:

Vout = ImRm

making the transfer function of the motor:

Vemf
Vout

=
s

RmCx

s2 + 1
RxCx

s+ 1
LxCx

Using the Vout from above, we can find:

Vemf
Im

=

τiKpK1

τiKpβ+RmCx
s2

s2 + Rm

Rx(τiKpβ+RmCx)
s+ Rm

Lx(τiKpβ+RmCx)

Or, if we let τm = RmCx, We can get the transfer function as

Vemf
Im

=

τiKpK1

τiKpβ+τm
s2

s2 + τm2α
τiKpβ+τm

s+
τmω2

0

τiKpβ+τm

Following the same logic as before, we can find the transfer function θ
Im

:

θ = ω
1

s
=
Vemf
Km

1

s

θ

Im
=

τiKpK1

Km(τiKpβ+τm)s

s2 + τm2α
τiKpβ+τm

s+
τmω2

0

τiKpβ+τm

The steady state of this system is zero, unlike before, where the steady state was related to the setpoint.
This ”zero position” is either straight up or straight down, where the required torque (and therefore current)
is zero.
The transfer function also shows that the controller is affecting both 2α and ω2

0 . In both cases, the original
values are multiplied by τm

τiKpβ+τm
. All of the values in this multiplier are defined as positive, therefore the

controller theoretically cannot make the system unstable, however, it can decrease α so that it approaches
instability.

5 Experiment

We changed the value of Rc and β through two 10k potentiometers. Changing β influence how close to
instability the system is (instability means when α is negative). Changing Rc modified how fast the pendulum
corrects to the upright position. If it corrects two fast, the pendulum tends to overshoot, but if it corrects
too slowly, the pendulum can only be stable in a small range.
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5.1 The Time It Worked

Below are the values we recorded from our working inverted pendulum:

β = 0.41

Rc = 5.25kΩ

C = 100µF

Rf = 100KΩ

Ri = 10KΩ

Vsp = 0V

Based on these values the multiplier in the transfer function is:

τm
τiKpβ + τm

= 0.386

The resulting transfer function is

Vemf
Im

=

τiKpK1

τiKpβ+τm
s2

s2 + 0.386 ∗ 2αs+ 0.386 ∗ ω2
0

=

τiKpK1

τiKpβ+τm
s2

s2 + 0.386 ∗ 2 ∗ 0.56s+ 0.386 ∗ 8.492

=

τiKpK1

τiKpβ+τm
s2

s2 + 0.43s+ 55.6

And,

α1 = 0.22s−1

ω0 = 5.27rad/s

Q =
ω0

2α
= 12.2

Original Motor Circuit With Torque feedback
α(s−1) 0.56 0.22
ω0rad/s 8.49 5.27

Q 7.56 12.2

α is a lot closer to zero. Since if α is negative the system would be unstable, an α close to 0 means that it
is closer to instablity. The actual α was much closer to 0 because the system is nonlinear. We measured the
disturbance response of our inverted pendulum and found an average α of approximately 0.1, however, the
damping increased as the pendulum approached its steady state, as seen in the graph below. In fact, with a
large enough disturbance, the system would enter a steady state where it would have large oscillations which
weren’t decreasing at all.
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Figure 9: Inverted pendulum response, shows a lower α and a nonlinear response, as the amplitude of the
oscillations does not decrease according to an exponential
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